

Combining ecology and archaeology to decipher the unique functioning of a pre-Columbian Amazonian fishery

Doyle McKey

Rumsaïs Blatrix

University of Montpellier, Centre D'Ecologie Fonctionnelle et Evolutive (CEFE, CNRS, Montpellier, France)

JOURNÉE SCIENTIFIQUE CEMEB 2018

Montpellier, 13 March, 2018

Humans adapt to their environment in part by modifying the environment to fit their needs

Humans adapt to their environment in part by modifying

the environment to fit their needs

OPEN ORCESS Freely available online

Ancient Clam Gardens Increased Shellfish Production: Adaptive Strategies from the Past Can Inform Food Security Today

Amy S. Groesbeck¹*, Kirsten Rowell², Dana Lepofsky³, Anne K. Salomon¹* 1 School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada, 2 Department of Biology, University of Washington, Seattle, Washington, United States of America, 3 Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada

Niche construction to manage aquatic resources.

A fishery based on long earthen weirs in a floodplain savanna

Life history of floodplain-migratory species: *high fecundity, high juvenile mortality (most die the first dry season), long-lived adults*

A fishery based on long earthen weirs in a floodplain savanna

Life history of floodplain-migratory species: high fecundity, high juvenile mortality (most die the first dry season), long-lived adults

Fishway gaps

Most adult fish leave the floodplain when water level is high, before traps are set

Most fish caught are juveniles

Photo © D McKey

Photo © CF Huchzermeyer

Most adult fish leave the floodplain when water level is high, before traps are set

Most fish caught are juveniles

Photo © CF Huchzermeyer

Photo @ CF Huchzermeyer

Photo © D McKey

Age class with very low reproductive value (most would die in any case during the first dry season)

High harvest levels can be sustained McKey et al. (2016), PNAS

A pre-Columbian fishery based on long earthen weirs in a floodplain savanna

Figure 5 Plans of present every 50-2

An artificial landscape-scale fishery in the Bolivian Amazon

Clark L. Erickson

Nature (2000)

» - shaped fishway gaps

Bolivia, pre-Columbian

Zambia, present-day

Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction

Doyle B. McKey^{a,b,1}, Mélisse Durécu^a, Marc Pouilly^c, Philippe Béarez^d, Alex Ovando^e, Mashuta Kalebe^f, and Carl F. Huchzermeyer^g

'V'- shaped fishways

100 m

structures

structures

Size of V-shaped

100 m

Width 3.7 m 100 m

Numerous ponds

No ponds

Photo © B Roux

Size of V-shaped

structures

Width 38.5 m

100 m

Width 3.7 m 100 m

Numerous ponds

No ponds

These differences suggest different modes of functioning

Photo © B Roux

Erickson postulated that weirs and ponds worked together

But how they may have done so is unclear

ields and canals vated crops

Fish weirs and artificial ponds

oan Program, The Field Museum, Chicago 2007

15 The remains of the fish weirs can be seen on the Bolivian landscape today as zig-zagging earthworks that cross the savanna for miles.

As the water from flooded pampa drains away and the dry season begins, fish are collected in the ponds and then later caught in the fish traps

Erickson & Brinkmeier (2007)

Weirs upstream of ponds

Ponds upstream of weirs

Objective: Understand the functioning of the pre-Columbian fishery

Describe in detail:

- Earthen weirs
- V-shaped structures
- Ponds

Characterize topographical variation in the landscape

Analyze the spatial relationships between ponds and weirs to try to infer how they may have worked together

Results reported here:

Blatrix R, B Roux, P Béarez, G Prestes-Carneiro, M Amaya, JL Aramayo, L Rodrigues, U Lombardo, J Iriarte, JG de Souza, M Robinson, C Bernard, M Pouilly, M Durécu, CF Huchzermeyer, M Kalebe, A Ovando, D McKey. The unique functioning of a pre-Columbian Amazonian floodplain fishery. *Scientific Reports* (in revision)

Grey rectangle: area Erickson surveyed exhaustively

Grey rectangle: area Erickson surveyed exhaustively

Grey rectangle: area Erickson surveyed exhaustively

Photos © D McKey

All the conveniences of home

Photos © D McKey

Photo © B Roux

Photos © D McKey unless otherwise noted

Weirs and ponds

Photos © D McKey unless otherwise noted

Orienting in the field using satellite imagery stored in a tablet

Rapid measurement and characterization of
270 V-shaped structures
382 ponds (89 ground-truthed)

Photos © D McKey

Stereophotogrammetry using a kite-borne camera

illustration[©] B Roux

Photos © D McKey unless otherwise noted

Bruno Roux, l'Avion Jaune

Surprising result: no fishway gaps in the V's

Zambian fishery: numerous fishway gaps

enter bleve fille of the case of the second second

Pre-Columbian Bolivian fishery:

Erickson postulated Our results: fishways fishways usually absent

Figure 5 Plans of fish weirs (zigzag structures). Small parallel openings in the weirs are present every 50–200 m.

The tips of the V's are in fact the highest parts of the weir! Woody vegetation, always on higher ground

Photo © D McKey

The berm of each pond (higher ground marked by palms and other trees) is only on the *downstream* side

Photo © B Roux

Direction of water outflow

Regular spatial organization of ponds in relation to V's of weirs

Photo and illustrations © B Roux

Most ponds are just upstream of a V, and the berm of the pond merges with the V

Weirs concentrate fish in ponds; the pond serves as the trap

As water recedes, fish follow current downstream, swim along the weir until reaching a pond, where they find deeper, slower water

As water level drops, fish are trapped in ponds and increasingly concentrated there

Weirs concentrate fish in ponds; the pond serves as the trap

As water recedes, fish follow current downstream, swim along the weir until reaching a pond, where they find deeper, slower water

As water level drops, fish are trapped in ponds and increasingly concentrated there

« Live storage » of fish in ponds permits a flexible harvesting organization (individual, collective) and schedule: crucial for a society in which fishing was combined with many other subsistence activities

Weirs concentrate fish in ponds; the pond serves as the trap

As water recedes, fish follow current downstream, swim along the weir until reaching a pond, where they find deeper, slower water

As water level drops, fish are trapped in ponds and increasingly concentrated there

« Live storage » of fish in ponds permits a flexible harvesting organization (individual, collective) and schedule: *crucial for a society in which fishing was combined with many other subsistence activities*

Zambian weir fishery: fish must be harvested daily from traps in fishways or rot: commercial fishery done by specialists

Are ponds artificial (Erickson 2000)?

Seemingly adaptive design: humans placed excavated soil only on the downstream side, to enhance trapping effectiveness

Easy for fish to swim into the pond (upstream shore, no berm) and difficult for fish to swim out (downstream shore, high berm and wall of the V)

Are ponds artificial (Erickson 2000)?

Seemingly adaptive design: humans placed excavated soil only on the downstream side, to enhance trapping effectiveness

Easy for fish to swim into the pond (upstream shore, no berm) and difficult for fish to swim out (downstream shore, high berm and wall of the V)

But there is a plausible alternative hypothesis

Floodplains in all this part of the Mojos show depressions and 'forest humps' aligned in the direction of stream flow

Such structures appear to be produced by scour and deposition induced by obstacles to water flow

Scour hole

Sediment ridge

Euler & Herget (2012), Catena

Floodplains in all this part of the Mojos show depressions and 'forest humps' aligned in the direction of stream flow

Such structures appear to be produced by scour and deposition induced by obstacles to water flow

more effective trap

Scour hole

Sediment ridge

Fishermen may have enhanced natural features (downstream pond berm) with artificial structures (weirs) to make a

Euler & Herget (2012), Catena

Excavation of a pond within a V-shaped structure of a weir

Photos © D McKey

Excavation of a pond within a V-shaped structure of a weir

Photos © D McKey

As Erickson postulated, ponds permitted 'live storage' of fish into the dry season

Synbranchus sp. (swamp eel), estivating in the mud of a pond

As Erickson postulated, ponds permitted 'live storage' of fish into the dry season

With ponds integrated, resident species could also be captured, throughout the year

Synbranchus dominates archaeoichthyological remains in the region – but is not consumed today!

Synbranchus sp. (swamp eel), estivating in the mud of a pond

As Erickson postulated, ponds permitted 'live storage' of fish into the dry season

With ponds integrated, resident species could also be captured, throughout the year

Synbranchus dominates archaeoichthyological remains in the region – but is not consumed today!

Many migratory species are known from the region, and their life histories are convergent with those in Zambia. Did weirs capture these? Next field trip!

Synbranchus sp. (swamp eel), estivating in the mud of a pond

Because it's fun

Because it's fun

Because it may be useful

Amazonian fisheries today function very differently than they once did: new gears, new people, new markets

Current fishing practices are not sustainable

Because it's fun

Because it may be useful

Amazonian fisheries today function very differently than they once did: new gears, new people, new markets

Current fishing practices are not sustainable

The past offers examples of other ways of fishing

Most commercially important fish in Amazonia are large species, and older, bigger fish are selectively harvested

http://www.faunagua.org/proyectos/divulgacion-de-informacion-sobre-pecespesca-y-las-amenazas-que-enfrentan-en-la-amazonia-boliviana

Pacú (Colossoma macropomum, Characidae)

Surubí (Pseudoplatystoma spp., Pimelodidae)

Most commercially important fish in Amazonia are large species, and older, bigger fish are selectively harvested

Pacú (Colossoma macropomum, Characidae)

Surubí (Pseudoplatystoma spp., Pimelodidae)

pesca-y-las-amenazas-que-enfrentan-en-la-amazonia-boliviana

http://www.faunagua.org/proyectos/divulgacion-de-informacion-sobre-peces

BBC Carth

In many areas, fisheries are clearly unsustainable

Giant Amazon fish 'locally extinct' due to overfishing By Zoe Gough

apaima can weigh more than 28st (180kg) and are highly prized by fishermen

Methylmerury is a problem in Amazonian rivers

Gold mining

https://earther.com/

Atmospheric deposition and storage in soils

Methylmerury is a problem in Amazonian rivers

Gold mining

https://earther.com/

Atmospheric deposition and storage in soils

Eating older, bigger fish increases exposure to methylmercury

bioaccumulation

Some commercial fish species are omnivores (e.g., pacú), some are piscivores (e.g., surubi): biomagnification

Fish seed-dispersal mutualisms are crucial to many Amazonian trees

http://macorrea97.wixsite.com/sbcphd/resources

Fish seed-dispersal mutualisms are crucial to many Amazonian trees

http://macorrea97.wixsite.com/sbcphd/resources

Overfishing and downsizing are leading to their collapse

CrossMark

Contents lists available at ScienceDirect Biological Conservation

journal homepage: www.elsevier.com/locate/bioc

Overfishing disrupts an ancient mutualism between frugivorous fishes and plants in Neotropical wetlands

Sandra Bibiana Correa ^a, Joisiane K. Araujo ^b, Jerry M.F. Penha ^b, Catia Nunes da Cunha ^b, Pablo R. Stevenson ^c, Jill T. Anderson ^{a,*}

Big fish are the best dispersers:

Disperse a greater diversity of seeds • Excr Are the ONLY dispersers for large • Reta seeded tree species ther

 $y = e^{2.08 \cdot 0.34^* x}$

Correa et al. (2008), Biological Reviews

Galetti et al. (2008), *Biotropica*

Excrete more seeds intact Retain seeds longer, disperse them further

Next step: field mission in May 2018 Archaeologists from University of Exeter, UK:

José Iriarte

Mark Robinson

Jonas Gregorio de Souza

Ichthyologist from the Museo Ictícola del Beni (Trinidad, Bolivia): Takayuki Yunoki

Archaeoichthyologist from Universidade Federal do Oeste do Pará (Santarem, Brasil): Gabriela Prestes-Carneiro

Next step: field mission in May 2018 Archaeologists from University of Exeter, UK:

José Iriarte

Mark Robinson

Jonas Gregorio de Souza

Ichthyologist from the Museo Ictícola del Beni (Trinidad, Bolivia): Takayuki Yunoki

Archaeoichthyologist from Universidade Federal do Oeste do Pará (Santarem, Brasil): Gabriela Prestes-Carneiro

10 razones para comer

Thanks to the agencies that funded this research

PEPS Blanc program of the INEE (National Institute for Ecology and Environment), CNRS

GDR Mosaïque, CNRS Thanks to:

> Julieta Ledezma (Museo de Historia Natural Noel Kempff Mercado) for administrative support in Bolivia

Gerardo Torrico for logistical support and allowing us access to his property

Einard for help with fieldwork

El honorable alcalde de Baures Dr. Juan Agreda Moreno for authorizing our research in the Baures region

Franziska Riedel for facilitating the organisation of field work

The organizers of EIAA4 for the invitation and for financial support to attend

And thank you for your attention!

Photo © D McKey

